DETERMINANTS OF OPERATIONAL EFFICIENCY AND THE RELATIONSHIP BETWEEN OPERATIONAL EFFICIENCY AND SOLVENCY OF LOGISTICS JOINT-STOCK COMPANIES

Assoc. Prof. Vu Thi Mai
maivt@neu.edu.vn
Faculty of Human Resources Economics and Management,
National Economics University, Hanoi, Vietnam

Dinh Gia Hoa
hoa8a2@gmail.com
School of Accounting and Auditing,
National Economics University, Hanoi, Vietnam

Mai Thanh Huong
huong.mai thanh.2212@gmail.com
School of Accounting and Auditing,
National Economics University, Hanoi, Vietnam

Pham Van Hau
phamhau100598@gmail.com
Vietnam Rural Industries Development and Research Institute, Hanoi, Vietnam

Abstract

Operational Efficiency (OE) and solvency play an important role in the success of any enterprises. Therefore, studying the relationship between OE and solvency needs to be taken comprehensively and continuously in order to find out long-term solutions for increasing business effectiveness. This paper examines the determinants of OE and the relationship between OE and solvency of the logistics joint-stock companies (JSCs) listed on the Vietnam Stock market with answers for the above-mentioned issues. This study mainly investigates 30 listed logistics firms from 2014 to 2018. The findings of this study suggested that the relationship between OE and solvency of logistics JSCs is inversely correlation.

Key words: Operational Efficiency, Logistics JSCs, Solvency.

1. Introduction

In the world’s current trend, logistics has become an important sector in the overall structure of national economy. According to Council of Supply Chain Management Professionals (CSCMP), logistics can bridge the gaps between other economic sectors, as well as promote the overall national economy. Not falling out of this trend, top logistics enterprises in Vietnam have equipped themselves with sustainable resources in order to fully adapt to this change. In this context, managers need to understand the financial structure of
their businesses to make appropriate adjustments and decisions to ensure operational efficiency and enhance their company’s development. In Vietnam, researchers have put too much emphasis on capital structure (the relationship between debt and equity) and little attention to solvency. According to statistics of Hanoi Stock Exchange (HNX) and Ho Chi Minh City Stock Exchange (HOSE), the amount of capital listed on the trading floor of Vietnamese logistics enterprises is still moderate. Small and medium-sized companies with limited resources cannot guarantee the ability to pay their own debts and ensure operational efficiency at the same time. This current situation generates deep challenges in management, investment, and production. Therefore, to stimulate sustainably economic development, the link between OE with the solvency of these companies should be taken into careful consideration. Up to now, there is generally hardly any domestic concrete research to clarify the relationship between OE and solvency of enterprises, especially among logistics JSCs in Vietnam. Thus, this article will concentrate on identifying determinants of OE and the tie between OE and solvency of logistics JSCs so as to give supported clues for this problem.

2. Literature review

There are many concepts of Operational Efficiency (OE). Operational efficiency can be formally defined as the ability of an enterprise to ensure the high quality of its products and services in the most cost-effective manner possible (Beal, 2016). Matthew Burrows (2016), OE consisted of reducing costs and service quality to keep existing customers and maintain high revenue. Dennis Hartman (2016) pointed out a method of measuring OE by evaluating how well a business managed its resources and utilized them to generate profits. Neil Kokemuller (2016) focused on OE in terms of encompassing several strategies and techniques to delivering quality goods in the most cost-effective and timely manner; and on OE involving performing similar activities in more efficient ways than their competitors. SubhaVaradan (2016) proposed that “OE is a critical system that can keep a company in business or close it down”. In domestic researches, Nguyen Van Cong (2019) pointed out that the OE of a company reflected operation results that a company possibly got when it used its input for business operation. Basically, OE is an indicator of the efficiency of using the input elements of business operation and solvency.

In terms of measuring OE, Bernstein (1988) identified that OE which presented firm performance can be evaluated by financial ratios such as solvency, capital structure, profitability, and turnover. Feng (2000) did also use financial to evaluate performance for airlines by using grey relation analysis and TOPSIS method to overcome the problem of small samples and outranking of airlines. Hobarth (2006) showed the correlation between financial indicators and OE of listed firms in the USA for a 19-year period by using 17 financial indicators and 3 variables to measure firm’s performance, namely market performance (measured by changes in stock market value), cash flow performance (solvency), and profitability (ROI). Sandstrom (2007) presented a historical review and some pragmatic solutions to Solvency. Four fundamental issues needed was also discussed for constructing solvency systems, i.e. valuation of assets and liabilities, risk margin for uncertainty in liabilities and assets and risk measures and modeling (risk categories, risk mitigation, diversification, etc.).
Regarding solvency, there is an array of different definitions. First, as to Pentikäinen, T. (1952), solvency was the difference between assets and liabilities. Benjamin (1977) referred to the Oxford Dictionary as "having enough money to meet all liabilities". Developing the theory of Pentikäinen, T, Jackson et al. (2002) defined as “when its total assets were higher than current liabilities”. Langiener (2004), solvency measured the amount of debt and other cost obligations compared to the amount of equity invested in an enterprise. Ibenta (2005) argued that solvency was a firm's ability to meet capital needs.

Scale of company: Research by Gleason, L. K Mathur and I.Mathur (2000), Onaolapo and Kajola (2010) showed that firms’ size had a positive and significant impact on business performance, i.e. the bigger a business is, the efficiency it could generate. However, according to the results of other studies from such researchers as Mudambi and Nicosia (1998), Lauterbach and Vaninsky (1999), Durand and Coeuderoy (2001), Tzelepis and Skuras (2004), Zeitun and Tian (2007), the scale had positive impact but not significant on business performance of the enterprises.

H1: Scale of company has a positive impact on Operational Efficiency

Degree of financial independence: The degree of financial independence is presented by the proportion of owner equity out of total equity (abbreviated as ER). The more debts a company owed, the lower degree of financial independence of this company is. According to the theory of Modigliani and Miller, when a business starts to borrow, the business will have advantages of tax shield. The low cost of debt combined with the tax shield advantage will lead to a decrease in total cost. Therefore, business performance is enhanced. Specifically, if the companies kept the degree of financial independence at a low level, its OE would increase. In contrast, the empirical research results of Zeitun and Tian (2007), Neil Nagy (2009); FoziaMemon, Niaz Ahmed Bhutto, GhulamAbbaas (2012) showed that debt ratio had a negative and significant effect on business performance of the enterprise.

H2: Degree of financial independence has a positive impact on Operational Efficiency

Total assets: Empirical research results of Rami Zeitun and Gary Gang Tian (2007); Onaolapo and Kajola (2010); Marian Siminica, Daniel Circiumaru, Dalia Simion (2011); FoziaMemon, Niaz Ahmed Bhutto and Ghulam Abbas (2012) showed that total assets were significantly negative impacts on business performance of the enterprise. According to the research of Marian Siminica, Daniel Circiumaru, Dalia Simion (2011), total assets also had a negative and significant effect on the OE of the company.

H3: Total assets has a positive impact on Operational Efficiency

Sales: The revenue will reflect the capacity of sales activities. An increase in goods sold, can positively affect business performance of a business. The study of Nguyen QuocNghi (2010) proved that there existed a direct correlation between total sales and OE.

H4: Total sales has a positive impact on Operational Efficiency

The relationship between OE and solvency
The topic of the relationship between OE and solvency has not attracted many studies from domestic researchers except for some foreign ones.

On the one hand, there exists a positive relationship between OE and solvency. Lambry and Valming (2009) evaluated and compared the solvency of companies on the Stockholm Stock Exchange over two times to see how solvency’s changes affecting firms’ performance. The results showed that solvency maintenance strategies did not affected greatly operational efficiency. A study of Victor Chukwunwieke (2014) determined the relationship between quick ratio and profitability ratios of listed companies on the Nigerian stock exchange NSE was positive. Rafid Hamad (2016) conducted an assessment of the relationship between solvency and performance of Standard Chartered Bank in Pakistan, which was also positive.

H5: Operational efficiency has a significant and positive relationship on Solvency

On the other hand, some researchers announced a negative correlation between OE and solvency. Jennifer Muthio Kyule (2015) after conducting a research on the relationship of OE and solvency for financial activities of listed companies on Nairobi stock exchange, Kenya concluded that solvency was negatively correlated with ROA which presented for OE. Evengi Raykov (2017) explored a trade-off between solvency and profitability in the event of financial crisis from analysis data in quarterly financial reports of 20 companies with different economies in the Bulgarian economy in 2007-2015. A conclusion was that during the 2007 crisis, financial managers successfully separated profits from payables when the correlation between them was negative.

H6: Operational efficiency has a significant and negative relationship on Solvency

![Conceptual model](Figure 1. Conceptual model)

2. Methodology

Evaluation indicators

+ Operational Efficiency

In a study evaluating operating efficiency in Egypt firms, Armer, Mostafa and Eldomiaty (2011) found asset quality, capital adequacy, credit risk and liquidity as major determinants of OE in highly competitive companies. Based on these results and a theory
developed by Hobarth (2006) about using financial ratios to evaluate OE, Nguyen Van Cong (2019) measured OE via:
- Total asset turnover (TAT) presented for asset quality.
- Equity turnover (ET) presented for capital adequacy.
- Equity Ratio (ER) presented for liquidity.
+ Solvency

The dimensions’ choice was influenced by the work of Nguyen Van Cong (2019). Based on this scale, Solvency can be measured via two ratios:
- Overall Ratios presented for the ability to repay all companies’ debts in overall.
- Quick Ratios presented for the ability to secure short-term debts.

Data collection

Data used in this study was collected and downloaded from audited financial statements, annual reports of logistic firms listed in two major State Securities Commission of Vietnam: HNX and HOSE for the period from 2014 to 2018.

These logistic firms with their data lead to a research sample with 150 observations during this period. In this case, the above-mentioned data were transferred into Excel and encoded as variables. After that, they become inputs for running regression.

Method

In order to examine the OE of researched enterprises, there are six variables used as follows. Two dependent variables which present for OE are Equity Turnover (ET) and Total Assets Turnover (TAT) and four other independent variables: Assets (presenting total assets of a company), Equity (presenting scale of a company), Equity Ratio (ER = Owners equity / Total assets, presenting financial independence of company) and Sales (presenting the result of selling process).

After that, in order to measure the solvency of listed logistics firms, there are two dependent variables: Quick ratio (QUICK = (Current assets − inventory) / Current liabilities) and Overall ratio (OVERALL = Total assets / Total liabilities) three other variables, including TAT, ER, and ET.

The study applies both qualitative and quantitative approaches. For a qualitative approach, the study takes a comparative and analytical method. Theory frame is based on a fundamental base about a system of ratios which reflect the OE (ET and TAT) and Solvency (QUICK and OVERALL) of a company. For a quantitative approach, the study use it by running a regression model of Ordinary Least Square (OLS) with the above-mentioned variables. The OLS’s first aim is to investigate how many factors impact OE and what they are. The second purpose is to forecast the link between OE and solvency. This paper uses the statistic software Stata 15 to run the regression to answer these questions.

The use of both qualitative and quantitative approaches aims to strengthen the reliability of the analyses because of evidence from different sources and a multi-directional vision. It also satisfies planned purposes better and leads a scientific-based conclusion.
3. Results

This paper has selected 30 logistics listed firms, 14 firms from HNX and 16 firms from HOSE - the two main securities exchanges of Vietnam. Of these, Vietnam Airlines corporation (HVN) has the highest authorized-capital with nearly 82,000 billion Vietnam Dong (VND), which is nearly two times bigger than the second highest authorized-capital (VJC - 36,000 billion VND and three times bigger than the HNX highest authorized-capital (PHP), while the smallest authorized-capital is PRC with only 12 billion VND. Concretely, eight companies including CDN, DL1, PHP, VJC, GMD, HVN, PVT, and VOS have their scale of capital from over 1000 billion VND. In this paper, all surveyed firms shall be mentioned by their coded stocks.

Operational efficiency

Firstly, a company’s capital scale is not directly proportional to its OE. More clearly, despite its highest capital scale at nearly 82,000 billion VND, circulating turnover of total assets in HVN only ranks in the eleventh place at 0.75 times, which is lower than the lowest authorized-capital firm VNL.

This conclusion is also strengthened when VJC stands in the second place of capital scale (at 36,000 billion VND) but at the tenth place of OE in terms of total assets turnover (TAT). On the other hand, in this period, VNL and PRC have the lowest capital scale but express its graduation in circulating turnover of total assets among the first.

From the above analysis, it can be said that a big capital scale is a convenient condition for a company to increase its OE but whether a company is able to explore this advantage or not, it is a quite different case.

To strengthen the founded result, our research team uses statistical software STATA 15 to model a regression with the ordinary least squares regression method (OLS).

Table 1. Regression TAT with Equity, ER and Sales

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>63.4640536</td>
<td>3</td>
<td>21.1546845</td>
<td>F(3, 146) = 97.49</td>
</tr>
<tr>
<td>Residual</td>
<td>31.6805086</td>
<td>146</td>
<td>.216989785</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>95.1445622</td>
<td>149</td>
<td>.638554109</td>
<td>R-squared = 0.6670</td>
</tr>
<tr>
<td></td>
<td>Adj R-squared = 0.6602</td>
<td>Root MSE = .46582</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| tat | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------------|-----------|-----------|---------|-----------|--------------------|
| er | 1.569933 | .1960385 | 8.01 | 0.000 | 1.182493 - 1.957372|
| logequity | -.696774 | .0428851 | -16.25 | 0.000 | -.7815297 - .6120183|
| logsales | .6702494 | .0404042 | 16.59 | 0.000 | .5903968 - .7501021|
| _cons | .1958264 | .2684158 | 0.73 | 0.467 | -.3346559 - .7263087|
After running model with the dependent variable of (TAT) as well as the three independent variables including Equity, ER and Sales (Independent variables are under logarithm), the result is:

\[
\text{TAT} = 0.20 + 1.57 \times \text{ER} - 0.70 \times \log(\text{Equity}) + 0.67 \times \log(\text{Sales})
\]

From the above-mentioned results, it can be seen that independent variables: Sales and ER maintain direct proportion with TAT and have at least 99% statistical meaning. This explains that enterprises with a larger proportion of equity accompanied with higher revenue from sales of goods and services will have significant increases in its OE. However, the independent variable Equity is inversely proportional to TAT and has at least 99% statistical significance. In other words, the smaller the companies are, the larger its OE is and vice versa. This result is consistent with the initial judgment of the group.

Secondly, logistics firms’ degree of financial independence is not directly proportional to their OE. The percentage of owners’ equity in total capital (ER) is the most important ratio to express a company’s degree of financial independence. Again, PRC and VNL are still leading companies in circulating turnover of owners’ equity at 4,827 and 4,578 times respectively while these firm’s percentage of owners’ equity is only with its arithmetical mean of 20% during five years.

To strengthen the founded result, our research team uses statistical software STATA 15 to model regression with the ordinary least squares regression method (OLS).

Table 2. Regression ET with Asset, ER and Sales

```
. reg et er logasset logsales

Source |       SS       |       df       |       MS       | Number of obs = 149
        |            |            |            | F(3, 145) = 77.73
Model  | 304.476301 | 3          | 101.4921     | Prob > F = 0.0000
Residual | 189.334743 | 145        | 1.30575685   | R-squared = 0.6166
        |            |            |            | Adj R-squared = 0.6087
Total  | 493.811043 | 148        | 3.3365111    | Root MSE = 1.1427

        | Coef.     | Std. Err.   |       t       | P>|t|     | [95% Conf. Interval]
et      |            |            |            |        |                |                |
er      | -2.856085 | .4449646    | -6.42     | 0.000     | -3.73554    | -1.976631
logasset| - .8936799 | .0996536    | -8.97    | 0.000  | -1.090641   | -.6967185
logsales| 1.001941 | .1021796    | 9.81     | 0.000     | .7999873   | 1.203895
_cons   | 2.750587 | .8168767    | 3.37     | 0.001     | 1.136063   | 4.365111
```

After running model with dependent variable of (ET) as well as three independent variables including Asset, ER, and Sales (Independent variables are under logarithm), the result is:

\[
\text{ET} = 2.75 - 2.86 \times \text{ER} - 0.89 \times \log(\text{Asset}) + 1.00 \times \log(\text{Sales})
\]

With the above-mentioned results, it can be seen that two independent variables Asset (Asset) and ER maintain an inverse relationship with dependent variable ET and have
at least 99% statistical meaning. This shows that OE of logistic JSCs will decrease when it keeps total assets and its financial independence at a high level. This result is consistent with the initial judgment of the group.

Solvency

Regarding the solvency of joint-stock companies listed on Vietnam's stock market, our research group uses two common indicators namely Overall ratio and Quick ratio to measure, evaluate, and our team draws the following conclusions.

Firstly, we can see that the order of all surveyed enterprises has completely changed when compared to OE. In more detail, DL1 is a low-performing enterprise, and its asset and equity turnover ratios are significantly smaller than other firms in the same industry. However, this company has sufficient resources to maintain the overall ratio at 72.02 times, which is the highest among all surveyed firms. In contrast, HVN and VJC are two enterprises with a large capital scale and OE, but the solvency of these businesses is limited when both ratios are ranked at the last level.

In terms of quick ratios, the above order is still unchanged. Enterprises have low operational efficiency will have high solvency and vice versa. Specifically, PGT holds the highest position for quick ratio (36.07 times), followed by DL1 with the second highest solvency at 15.91 times, but the performance of both these businesses is at a low level.

Relationship between operational efficiency and solvency

After considering both OE and solvency of logistics JSCs listed on the Vietnamese Stocks market, this study draws some findings as follows.

Firstly, there is an inverse correlation between OE and solvency of enterprises. A business with good performance always has not enough resources to maintain a stable solvency. This is explained by the fact that VNL and PRC are always the two leading companies in terms of operating efficiency, however, they keep solvency at a low level. Not only does it occur in small and medium-sized companies, but this relationship also exists in large companies (HVN and VJC). Despite their largest scale ad high financial independence, HVN and VJC only have enough resources to ensure the overall solvency and cannot guarantee the ability to pay short-term debts.

The results are similar to the results of the previous studies. According to (Kyule, 2015), the solvency of companies was negatively correlated with OE. This has been validated for all surveyed companies by our research team, especially VNL, PRC, HVN, VJC and DL1. In addition, (Raykov, 2017), companies that reduced their solvency and raise more debts would boost their efficiency of the companies' operations. This is a negative correlation.

To strengthen the founded result, our research team used statistical software STATA 15 to model regression with the ordinary least squares regression method (OLS).
This result is proven when two independent variables ET and ER are directly proportional between ET, ER and solvency; or

\[\text{ER} = 4.53 \times \text{TAT} + 1.98 \times \text{ET} + 20.71 \times \text{ER} \]

Moreover, our research team also used statistical software STATA 15 to run model with the dependent variable of (QUICK) as well as the three independent variables including TAT, ET, and ER, the result is: \[\text{QUICK} = -8.99 - 4.53 \times \text{TAT} + 1.98 \times \text{ET} + 20.71 \times \text{ER} \]

The independent variable TAT is inversely proportional to both solvency ratios: Overall ratio and Quick ratio and has at least 99% statistical meaning. This result is consistent with the previous research conclusion of (Raykov, 2017) and (Kyule, 2015). If a logistics company increased the turnover of its total assets to enhance its OE, this firm would have to bear the risk of reducing its solvency. In other words, the more efficient in the use of assets is, the more limited its ability to pay debts and vice versa.

Secondly, equity turnover (ET) and ER are necessary yet sufficient conditions to increase solvency. Generally, there is a direct proportion between ET, ER and solvency; or big scales of capital and highly independent JSCs are premises for the creation of a high solvency. This is proven when two independent variables ET and ER are directly

Table 3. Regression OVERALL with TAT, ER and ET

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs</th>
<th>F(3, 144)</th>
<th>Prob > F</th>
<th>R-squared</th>
<th>Adj R-squared</th>
<th>Root MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>14934.3589</td>
<td>3</td>
<td>4978.11962</td>
<td>148</td>
<td>15.71</td>
<td>0.0000</td>
<td>0.2466</td>
<td>0.2309</td>
<td>17.802</td>
</tr>
<tr>
<td>Residual</td>
<td>45633.608</td>
<td>144</td>
<td>316.900055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>60567.9669</td>
<td>147</td>
<td>412.026985</td>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| overall | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------|--------|-----------|-------|------|---------------------|
| tat | -12.91052 | 3.461433 | -3.73 | 0.000 | -19.7523 | -6.068733 |
| et | 5.44156 | 1.780232 | 3.06 | 0.003| 1.922799 | 8.960322 |
| er | 51.77024 | 9.165592 | 5.65 | 0.000| 33.65376 | 69.88672 |
| _cons | -23.95817| 7.311551 | -3.28 | 0.001| -38.41 | -9.506342 |

After running model with the dependent variable of (OVERALL) as well as the three independent variables including TAT, ET and ER, the result is:

\[\text{OVERALL} = -23.96 - 12.91 \times \text{TAT} + 5.44 \times \text{ET} + 51.77 \times \text{ER} \]

Table 4. Regression QUICK with TAT, ER and ET

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs</th>
<th>F(3, 144)</th>
<th>Prob > F</th>
<th>R-squared</th>
<th>Adj R-squared</th>
<th>Root MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>14934.3589</td>
<td>3</td>
<td>4978.11962</td>
<td>148</td>
<td>15.71</td>
<td>0.0000</td>
<td>0.2466</td>
<td>0.2309</td>
<td>17.802</td>
</tr>
<tr>
<td>Residual</td>
<td>45633.608</td>
<td>144</td>
<td>316.900055</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>60567.9669</td>
<td>147</td>
<td>412.026985</td>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| overall | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---------|--------|-----------|-------|------|---------------------|
| tat | -12.91052 | 3.461433 | -3.73 | 0.000 | -19.7523 | -6.068733 |
| et | 5.44156 | 1.780232 | 3.06 | 0.003| 1.922799 | 8.960322 |
| er | 51.77024 | 9.165592 | 5.65 | 0.000| 33.65376 | 69.88672 |
| _cons | -23.95817| 7.311551 | -3.28 | 0.001| -38.41 | -9.506342 |
proportional with both solvency ratios and have at least 99% statistical meaning. However as analyzed above, increasing turnover of the total assets reduced the solvency of the enterprises significantly. For logistics JSCs, despite having a large capital scale and high degree of financial independence, these enterprises allocated a large amount of companies’ resources on enhancing OE by promoting total assets turnover. Although the efficiency of operations increases, the solvency decreases due to over-utilized resources. This gives rise to payment risk for these businesses. From the results of qualitative and quantitative approach in thirty logistics JSCs, it can be concluded that high performance can lead to low solvency and vice versa.

4. Discussion and Conclusion

By analyzing the relationship between OE and solvency of logistics JSCs listed on the Vietnam Stock market in the 2014-2018 period, this study draws the conclusion that OE and solvency exist an inversely proportional relationship. In other words, a strong OE possibly causes low solvency and vice versa.

Some policy implications for logistics JSCs can be as follows:

Firstly, these surveyed firms should restructure their total asset to control assets turnover and raise solvency. A reasonable usage of capital helps a company save mobilizing capital cost and guarantee solvency. A company should also promote mobilized capital for its business operation or expands its scale of capital and assets. In other words, a reasonable structure of assets is a necessary condition.

Secondly, low OE firms should raise more debts to balance between their performance and solvency. Raising more debts helps these companies tighten their cost by tax to improve their operational activities considerably and stabilize their profitability.

By researching the relation between OE with solvency of logistics JSCs listed on the Vietnam Stock market, this paper contributes both certain theoretical (clarifying their links) and practical content (giving solutions to increase both OE and solvency). However, as the data of these logistics JSCs being are only take from a five-year period, it is not long enough to have a large research sample. A related study in the future may be undertaken including more industries rather than the logistics field only and a study over a longer period of time would give out a more precise prediction the relationship between OE and solvency, and more elements which affect them in companies.

5. References

